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Abstract—Transform coding based on the discrete cosine trans-
form (DCT) has been widely used in image coding standards.
However, the coded images often suffer from severe visual
distortions such as blocking artifacts. In this paper, we propose a
novel image deblocking method to address the blocking artifacts
reduction problem in a patch-based scheme. Image patches are
clustered and reconstructed by the low-rank approximation,
which is weighted by the geodesic distance. Experimental results
show that the proposed method achieves higher PSNR than
the state-of-the-art deblocking and denoising methods and the
processed images present good visual quality.

Index Terms—Image deblocking, patch-based, low-rank ap-
proximation, geodesic distance, reconstruction

I. INTRODUCTION

With the rapid development of the multimedia technology,
tons of image and video resources are being spread through
all kinds of means on the Internet everyday. To make the full
use of the limited bandwidth, transform coding, e.g. the block-
based discrete cosine transform (BDCT) has been widely used
to compress images and videos. However, due to the fact
that each block of the image is transformed and quantized
independently in BDCT, the compressed image often suffers
from severe degradation especially around block boundaries.
Such degradation is known as the blocking artifacts, which
becomes more serious when the bit rate is low.

In order to alleviate the blocking artifacts, many reveal-
ing studies and researches have been performed in recent
decades. One of the most intuitive ways is to smooth the
block boundaries directly by a deblocking filter. This kind of
methods required minimum computational cost and could be
implemented easily. However, these methods were limited to
block boundaries and ignored the prior knowledge of natural
images. The other kind of methods tended to restore the
image and considered the deblocking process as an inverse
problem of the initial BDCT operation. Therefore, the pri-
or knowledge of the image could be well utilized in the
restoration procedure. The projection onto convex sets (POCS)
based methods are the representative research of this kind of
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methods for deblocking. Foi et al. [1] proposed an image
restoration filtering algorithm based on the shape-adaptive
DCT (SA-DCT). In this method, the adaptive support for the
transform produced clean reconstructed edges while reducing
the unpleasant ringing and blocking artifacts.

Although these methods can achieve good deblocking per-
formances, the correlations between similar patches are ne-
glected. It is well known that there exists redundant infor-
mation in natural images. In recent years, the self-similarity
property in natural image and video signals has been widely
explored, especially in the image restoration field. Ji et al. [2]
proposed a video denoising method using the self-similarity.
By clustering similar patches and solving a low-rank matrix
completion problem, their method presented good performance
dealing with mixed noise.

In this respect, blocking artifacts can be regarded as a
specific noise and be solved by the denoising method since
decoded images still have redundant information. Neverthe-
less, blocking artifacts are different from general noises after
all. Blocking artifacts appear mostly on the boundaries of
the image blocks and the intensity distortion is less than
general noises. In addition, blocking artifacts somehow blur
the image blocks and degrade the performance of the patch
clustering. In this paper, we propose a novel image deblocking
method. Since the redundant information in decoded images
has rarely been utilized in deblocking methods, we present the
proposed method in the following steps. By clustering similar
patches, we can obtain a matrix that should be low-rank.
Then we use the singular value thresholding (SVT) algorithm
[3] to solve the low-rank approximation problem. After that,
to compensate for the mismatch of the clustering procedure
caused by blocking artifacts, geodesic distance is utilized to
weight different patches in the matrix. At last, we relocate the
updated patches back to the image.

The rest of the paper is organized as follows: Section I
introduces the deblocking problem and gives a brief overview
of the proposed method. The details of the method, including
patch clustering procedure, low-rank approximation algorithm
and geodesic distance weighting method are presented in the
following subsections. Experimental results are demonstrated
in Section III, which show the state-of-the-art quality of the
final deblocking results of the proposed method, both in terms
of objective criteria and visual quality. Finally, Section IV
concludes the paper.
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Fig. 1. The flowchart of the proposed patch-based image deblocking method.

II. PATCH-BASED IMAGE DEBLOCKING METHOD

A. Problem Formulation

The BDCT compressed image can be modeled as corrupted
one with the quantization noise as follows

Y = X + E, (1)

where X is the original image, Y is the compressed blocky
image and E is the quantization noise. In this paper, we adopt
a patch-based scheme to reconstruct X from Y by reducing E.
Let yi denote a small image patch of size

√
n×

√
n, located in

position i in image Y . The corresponding clean image patch
is denoted by xi. Then we have the following equation:

yi = xi + ei, (2)

where ei is the quantization noise for the image patch xi.
For each patch yi in the input decoded image Y , a group
of similar patches is collected. The whole group is formed
into a data matrix. According to the self-similarity property of
natural images, all the non-local similar patches have similar
underlying image structures. Therefore, the rank of the data
matrix should be low. As shown in Fig.1, our deblocking
method applies the low-rank approximation to each data matrix
constructed by the local patch clustering. Then the processed
data matrix weighted with the geodesic distance is reformed
into image patches and relocated to their original positions.
Finally, by aggregating the processed patches with overlapped
region, an estimation of the original image X is obtained and
it can be used as the input for the following iteration.

B. Patch Clustering

For the compressed image Y , we set patch yi as the
reference patch and search for patches that are similar to yi
within a neighborhood of position i, Ω(i). The indices of these
similar patches are grouped into Gi, which is

Gi = {j|T ≥ ∥yi − yj∥2, j ∈ Ω(i)}, (3)

where the parameter T controls the minimum degree of the
similarity among patches. Assuming that m similar patches

have been found, we can define an n×m data matrix YGi as
follows,

YGi = (yGi(1)
, yGi(2)

, . . . , yGi(m)), (4)

where yGi(k)
is an n× 1 vector containing all columns of the

kth similar patch. Then we can rewrite Eqn.(2) as:

YGi = XGi + EGi , (5)

where XGi represents the data matrix consisting of the original
image patches and EGi represents the quantization noise.

C. Low-Rank Approximation

As described above, the data matrix XGi should have low-
rank structure. Given the corrupted data matrix YGi , XGi can
be restored by solving the standard low-rank minimization
problem:

min rank(XGi),

s.t. ∥XGi − YGi∥2F < c · σE ,
(6)

where σE is the variance of the quantization noise, ∥ · ∥F
denotes the Frobenius norm and c is a scaling factor for the
error tolerance.

Since the low-rank minimization problem in Eqn.(6) is an
NP-hard problem and cannot be solved efficiently, we consider
its tightest convex relaxation instead:

min ∥XGi∥∗,
s.t. ∥XGi − YGi∥2F < c · σE ,

(7)

where ∥XGi∥∗ represents the nuclear norm of matrix XGi ,
which is equal to the sum of the singular values σj of
matrix XGi , ∥XGi∥∗ =

∑
j σj(XGi). Many numerical low-

rank approximation algorithms can be utilized to solve the
minimization problem in Eqn.(7). In this paper, we use the
Singular Value Thresholding (SVT) algorithm [3] for its
simplicity and ease of implementation.

The SVT algorithm starts with X0
Gi

= YGi , and iterates
between two steps as follows:{

Zk = Dτ (Xk−1
Gi

),

Xk
Gi

= Xk−1
Gi

+ δ(YGi − Zk),
(8)
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where Dτ (·) denotes the soft shrinkage operator and δ is
an iterative regularization factor controlling the feedback of
filtered noise. Let Q = UΣV T be the SVD for Q, then Dτ (Q)
is defined as:

Dτ (Q) = UΣτV
T , (9)

where Στ = diag(max(σ(Q) − τ, 0)). σ(Q) denotes the
singular values of matrix Q and τ is the threshold for the
soft shrinkage operation.

As demonstrated in [4], under the assumption of Laplacian
prior, the thumb rule for choosing the threshold τ in Eqn.(8)
is τ = 2

√
2 · σ2

E/σXGi
, in which σXGi

denotes the locally
estimated signal variance given as follows:

σXGi
=

√
max(σ2(X0

Gi
)/m− σ2

E , 0), (10)

where σ(X0
Gi
) denotes the singular values of X0

Gi
. In the

iteration procedure of Eqn.(8), the noise variance and the
signal variance should be updated because the quantization
noise has been reduced in each iteration. We use the suggestion
in [5] to update the two variances:

σ
(k)
E = γ

√
σ2
E − ∥X0

Gi
− Xk−1

Gi
∥2, (11)

σ
(k)
XGi

=

√
max(σ2(Xk−1

Gi
)/m− (σ

(k)
E )2, 0), (12)

where γ is a scaling factor controlling the re-estimation of the
noise variance and σ2

E is the quantization noise variance. The
details are presented in Section III-B. Therefore, the thresholds
τ can be updated by

τ (k) = 2
√
2(σ

(k)
E )2/σ

(k)
XGi

. (13)

D. Patch-Based Geodesic Distance Weighting

In some cases, the patch clustering may produce undesirable
results. Fig.2(b) (a portion of Lena image) shows an example
of undesirable clustering results B1 and B2 of the reference
patch R. B1 and R come from the same region (the frame
of the mirror in the image) while B2 is actually a part of
Lena’s hair. Although the intensities of B1 and B2 seem close
to R, they have relatively different textures. Blocking artifacts
somehow make them look the same. In order to solve this
problem, we adopt a weighting method based on the geodesic
distance to compensate for the mismatch of the clustering
procedure. Patch-based geodesic distance defines a path of
approximately constant intensity connecting two patches. If
two patches have a low geodesic distance, they basically lie
in the same region of the image. Thus, we give patches high
weights in the aggregation if they lie in the same region with
the reference patch.

The patch-based geodesic distance dpGD(i, j) between the
reference patch yi and patch yj is defined as a shortest path
connecting yi and yj in the intensity sense [6]:

dpGD(i, j) = min
p∈Γi,j

d(p), (14)

xGi(k)xGi(j)w(i,Gi(j))

w(i,Gi(k))

B2 B1

R

(a) (b) (c) (d)

Fig. 2. Undesirable clustering results and the geodesic distance weighting.
(b) is the enlargement of a local region of the Lena image (a). The red
block R represents the reference patch; The blue block B1 and the green
one B2 represent the jth and the kth similar patch with the reference patch,
respectively. (c) is the geodesic distance map of (b), which is used to weight
the processed data matrix (d).

where Γi,j denotes the set of all the paths between yi and
yj . A path p defines a sequence of neighboring positions in
8-connectivity. The cost of p is defined as follows

d(p) =

np−1∑
i=1

∥ypi − ypi+1∥2, (15)

where np is the number of positions on the path p.
Finally, the weight between patches is given by

w(i, j) = e−dpGD(i,j)/ε, (16)

with ε being a parameter that controls the importance of the
geodesic distance weight.

In Eqn.(8), the iterative regularization is performed on each
clustered data matrix YGi to restore the clean data matrix
XGi . The whole image can be restored by aggregating all the
overlapped patches after each cluster is processed. However,
in order to utilize the updated data for the patch clustering and
accelerate the convergence of the above iterative procedure, a
global iteration is adopted.

First we perform SVT on each YGi , i ∈ Ψ, where Ψ
contains all the possible positions for reference patches. For
each intermediate Xk

Gi
= (xGi(1), xGi(2), . . . , xGi(m)), we

assign geodesic distance weights for it as follows

Xk
Gi

′
= (w(i, Gi(1))·xGi(1), . . . , w(i, Gi(m))·xGi(m)), (17)

and aggregate all the weighted Xk
Gi

′
into a whole image, that

is, reform w(i, Gi(k)) · xGi(k) to the
√
n ×

√
n patch and

relocate it back to its position Gi(k) (refer to Fig.1). Then the
global iterative regularization on the whole image is applied
to produce the input for next iteration. The maximal number
of iteration is set to be 10.

III. EXPERIMENTAL RESULTS

A. Experiments Setup

The experiments are implemented on MATLAB platform.
Three typical images are used for the tests: Lena, Barbara and
House. Three quantization tables, denoted as Q1, Q2 and Q3
used by [7] have been adopted in order to simulate various
types of BDCT compression.
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The original test images are coded by the three quantization
tables and then reconstructed by the state-of-the-art image de-
blocking methods (FoE [7], SA-DCT [1]), denoising methods
(the classic BM3D [8] and the recent improved version NL-
Bayes [9]) and the proposed method.

B. Quantization Noise Variance Estimation

In order to apply the low-rank minimization deblocking
algorithm, we need a suitable value for the quantization noise
variance σ2

E . In our experiments, the noise variance σ2
E is set

as in [1]:

σ2
E = 0.69 · (q̃)1.3, q̃ = 1/9

3∑
i,j=1

qi,j , (18)

where the quantization table Q = [qi,j ]i,j=1,...,8 and the mean
value q̃ uses only nine of the quantization table entries which
correspond to the lowest-frequency DCT harmonics (including
the DC-term).

C. Deblocking Results

In Table I, we present results for deblocking from BDCT
quantization using the three specific quantization tables Q1,Q2
and Q3. We compare the results obtained by the proposed
algorithm with the results obtained by the state-of-the-art
methods [1], [7], [8], [9]. From Table I we can conclude that
the proposed algorithm outperforms most of the methods in
terms of Peak Signal-to-Noise Ratio (PSNR). Also, the state-
of-the-art denoising methods cannot obtain satisfactory de-
blocking results since there are significant differences between
blocking artifacts and regular noises.

We also compare the visual quality of these four methods
in Fig.3. Portions of Lena and Barbara at quantization tables
Q1 and Q2 are illustrated. The proposed method has the
best visual quality against all the other methods, especially
along the edge structures. The blocking artifacts are mostly
suppressed in the outputs of the proposed method.

Fig. 3. The portions of deblocking results of Lena and Barbara compressed by
quantization tables Q1 and Q2, respectively. From left to right: the decoded
image, NL-Bayes, FoE, SA-DCT, BM3D, the proposed method, the clean
image. The red arrows point out the unsatisfactory artifacts.

TABLE I
PSNR (DB) RESULTS OF DIFFERENT METHODS FOR QUANTIZATION

TABLES Q1,Q2 AND Q3.

Images Decoded [7] [1] [8] [9] Proposed
35.13 36.12 36.31 36.36 35.69 36.44

House 34.53 35.78 35.80 35.81 35.27 36.03
32.78 33.38 33.36 33.38 33.15 33.54
34.97 35.98 35.61 36.01 35.62 36.09

Lena 34.40 35.53 35.16 35.45 35.06 35.58
32.94 34.01 33.69 33.82 33.59 33.98
32.47 33.00 33.14 33.27 32.85 33.30

Barbara 32.13 32.71 32.81 32.90 32.50 32.94
31.14 31.78 31.85 31.74 31.61 31.98

Average 33.39 34.25 34.19 34.30 33.93 34.43

IV. CONCLUSION

In this paper, we propose a patch-based image deblocking
method using geodesic distance weighted low-rank approxima-
tion. By clustering similar patches, a low-rank data matrix can
be obtained. The singular value thresholding (SVT) algorithm
is applied to solve the low-rank approximation problem. To
compensate for the mismatch of the clustering procedure,
patch-based geodesic distance is utilized to weight different
patches in the data matrix. At last, we relocate the updated
patches back to the image. Experimental results show that
the proposed method achieves higher PSNR than the state-of-
the-art deblocking and denoising methods and the processed
images present good visual quality.
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